Non-Electric Steam or Air Powered Condensate Pump Used to pump condensate using plant steam or compressed air as motive force

Cemline Condensate Pumps

Cemline non-electric condensate pumps have many advantages. There are no impellers or seals, or cavitation problems and no electricity is required. Condensate is efficiently moved at reduced operating cost.

Cemline Condensate Pumps (CCP Series) use steam or compressed air as a motive force to move condensate from points of lower elevation to points of higher elevation, from points of lower to higher pressure, or from a vacuum to a point of higher pressure or elevation.

Traditionally, condensate has been transferred with the use of electrically operated condensate pumps. When moving condensate with electric pumps, the electric pumps tend to wear out quickly. Electric condensate pumps have impellers and seals which can wear, leak, or break down due to harsh condensate environments. The benefit of using non-electric condensate pumps instead of electric condensate pumps is the non-electric condensate pumps have no impellers or seals to wear, requiring less downtime and maintenance. In addition, there are some remote locations where electrical service is not readily available or it is hazardous to use electricity.

Additional benefits from the use of non-electric condensate pumps is the reduction of operating costs associated with returning hot condensate to the boiler. Typically electric condensate pumps require the condensate be flashed to atmospheric pressure and decreased in temperature before being pumped to the boiler. The non-electric condensate pumps reduce costs compared to electric condensate pumps because the non-electric condensate pumps can return condensate to the boiler at a higher temperature, which reduces the heating costs required to re-heat the condensate. Along with the reduced expense of re-heating of condensate, less water treatment chemicals are required and less make up water is required to be added to the system.

Applications:

Typical installations would be remote locations, hazardous environments or any application where electric pumps fail rapidly.

Pump Mechanism - The Cemline Piston Powered Condensate Pump is unique from the other non-electric condensate pumps in that it is springless. This updated reliable springless design uses a dual piston type configuration that acts as a spool selector to shift the valve positions. The pump is able to work with up to 250 PSI motive steam pressure. It can operate from almost no load to it's rated maximum capacity. The piston powered condensate pump has easy maintenance, is interchangeable with most current spring pumps out on the market today and is made of all stainless steel components. This design solves the poor reliability issue of the spring snap mechanism of the past.

In addition, the piston powered condensate pump due to a larger orifice, less friction and longer travel, has an increased capacity over the spring mechanism pumps. This may allow for a smaller pump than before therefore saving you valuable space and money.

Description of the Spring Mechanism 3 step process:

The below illustrations demonstrate how non-electrical condensate pumps work during the traditional three step process of moving condensate with a spring mechanism.

1. Fill Stage:

Gravity causes condensate flow from receiver tank through the inlet check valve into the pump tank. At the point the outlet check valve and motive force valve are closed. The vent valve is open allowing for equalization of pressure between the receiver and the pump tank.

2. Discharge Stage:

The condensate fills the pump tank until the pump mechanism opens the motive force valve and simultaneously closes the vent valve. With the motive force valve open, the pump tank begins to pressurize as the motive force pressure becomes great enough to close the inlet check valve. When the pressure in the pump tank becomes greater than the pressure at the outlet check valve, the outlet check valve opens and condensate is discharged from the pump tank into the condensate return piping. Because the inlet check valve is closed condensate is stored in the receiver tank.

3. Equalization Stage:

The condensate is pumped out and reaches a low level causing pump mechanism to close the motive force valve and open the vent valve. The outlet check valve closes when the pressure in the pump tank is less than that of the outlet line. At this time the inlet check valve is also closed. Then the pressure in the pump and the receiver equalize so that the inlet check valve will open and the fill cycle will begin again.

Description of the Springless Mechanism 4 step process Piston Powered

Abstract

The illustrations below demonstrate how the springless piston powered non-electrical condensate pumps work during the four step process of moving condensate.

Phase 1:

Phase 2:

 cycle, the pump is empty, the float and the connected primary piston are in the down position and the secondary piston is to the left. Filling the pump with liquid gradually raises the float and the primaryRight Phase 2-When the tank is filled the float rises until it reaches to the top of its travel causing the connected primary piston to open the port, which directs the motive pressure to the left side of the secondary piston pushing the secondary

Phase 3:

Left Phase 3-With the secondary piston pushed all the way to the right, the motive pressure pathway to the vessel is open allowing motive pressure to pressurize the tank. Pressurizing the tank forces the liquid to flow from the vessel through the outlet check valve into the condensate return piping.

Right Phase 4-In the final phase, the float and primary piston fall as the motive pressure has forced the liquid out of the vessel. When the float and connected primary piston reach the bottom of their travel, the primary piston opens the port that directs the motive pressure to the right side of the secondary piston. The motive pressure pushes the secondary pressure to the left preventing motive pressure from entering the tank

and opening a pathway between the tank and the vent. Finally, the vessel's pressure is vented and the unit is ready to fill and repeat the cycle.

Phase 4:

Standard Equipment

Cemline non-electric condensate pumps feature ductile iron or welded steel ASME code vessels, stainless steel check valves and stainless steel mechanism to assure highest quality.

Vessel

The pump body can be manufactured out of carbon steel or cast ductile iron.

Ductile Iron- The ductile iron is ASTM A395 materials of construction meeting ASME B16.42 pressure/temperature rating.

ASME Tank - Cemline tanks are manufactured in strict accordance with ASME Code requirements and registered with the National Board Registration. The fabricated steel tanks are rated for a working pressure of 150, 200, or 250 psig depending upon the size and application. The H22CCP and H240CCP are only available with an ASME vessel. Vessel can be made from carbon or stainless steel.

316 stainless steel check valves

The 316 stainless steel check valves are corrosive resistant and have low cracking pressures for easy opening during the pumping cycle.

Mechanism

The stainless steel mechanism is made from 316 stainless steel. Either a piston powered mechanism or a single spring reducing wear on the snap action mechanism are available.

Piston Powered - This new reliable springless design uses a dual piston type configuration that acts as a spool selector to shift the valve positions. The springless pump is warrantied for 3 years for three million cycles.

Snap Action Spring - The spring is not under tension in either the up or down position allowing a long service life. The mechanism is warrantied for 3 years for one million cycles.

Sight Glass

The brass sight glass allows for easy viewing of the water level in the condensate pump and easy trouble shooting of the condensate pump when required.

Options

Skid Mounted with Receiver Tank - Cemline can supply a skid mounted prepackaged unit with an A.S.M.E. rated receiver tank. Packages available are either simplex or duplex condensate pumps. The packaged systems include receiver tank gauge glass, shut off valves, and a skid.

Cycle Counter - The cycle counter is available in either electric or mechanical. It counts the number of cycles the mechanism has made.

Insulating Jacket - The insulating jacket reduces heat loss of the condensate in the tank.

Non-Electric Steam or Air Powered Condensate Pump Dimensional Data

V18CCP

ASME Carbon Steel Vessel

DIMENSIONS (inches)							
$\begin{gathered} \text { SIZE } \\ \text { (Inlet x Outlet) } \end{gathered}$	A	B	C	D*	E	F	Wt.
$1 " \times 1 "$	$263 / 4$	8	5	275/8	9	173/4	145
$11 / 2{ }^{1 \times 1} \times 1 / 2^{\prime \prime}$	291/2	8	5	275/8	9	173/4	155

Ducile Iron Vessel

DIMENSIONS (inches)							
$\begin{array}{c\|} \text { SIZE } \\ \text { (Inlet } \mathrm{x} \text { Outlet) } \end{array}$	A	B	C	D*	E	F	Wt.
$1 " \times 1$ "	26	73/8	3	243/4	$71 / 2$	151/2	173
1¹/2" $\times 1$ 1/2"	283/4	73/8	3	243/4	$71 / 2$	$151 / 2$	173

*Allow additional 18 " clearance for maintenance.

V18CCP-Operating Characteristics
Pump Discharge per cycle: 4.2-5.1gallons
Steam consumption: ~3 lbs per 1000 lbs of liquid pumped
Air consumption: ~ 100 SCF per 1000 lbs of liquid pumped
Recommended fill head: $6^{\prime \prime}$
Exhaust Outlet: 1/2" NPT
Motive Inlet: 1/2" NPT
Mechanism: Springless piston powered
Maximum operating pressure: 150psi @ $400^{\circ} \mathrm{F}$ max.

V25CCP

ASME Carbon Steel Vessel

DIMENSIONS (inches)							
$\begin{gathered} \text { SIZE } \\ \text { (Inlet x Outlet) } \end{gathered}$	A	B	C	D*	E	F	Wt.
$1 " \times 1$ "	133/8	133/8	11	391/8	9	173/4	192
$11 / 21 \times 11 / 2{ }^{1 / 2}$	143/4	143/4	11	391/8	9	173/4	194
$2^{\prime \prime} \times 2$ "	15	15	11	391/8	9	173/4	197
$3^{\prime \prime} \times 2$ "	161/2	15	11	391/8	9	173/4	209

Ducile Iron Vessel

DIMENSIONS (inches)							
$\begin{gathered} \text { SIZE } \\ \text { (Inlet x Outlet) } \end{gathered}$	A	B	C	D*	E	F	Wt.
$1{ }^{\prime \prime} \times 1$ "	137/8	131/8	7	37	758	153/4	260
$11 / 2{ }^{1 \prime \prime} \times 11 / 2^{\prime \prime}$	15	141/4	7	37	75/8	153/4	260
$2^{\prime \prime} \times 2$ "	151/4	141/4	7	37	75/8	153/4	260
$3^{\prime \prime} \times 2$ "	151/4	153/4	7	37	75\%	153/4	269

*Allow additional 18 " clearance for maintenance.
V25CCP-Operating Characteristics
Pump Discharge per cycle: 7.8-8.6 gallons
Steam consumption: $\sim 3 \mathrm{lbs}$ per 1000 lbs of liquid pumped Air consumption: ~ 100 SCF per 1000 lbs of liquid pumped Recommended fill head: 12
Exhaust Outlet: 1/2" NPT
Motive Inlet: $1 / 2^{\prime \prime}$ NPT
Mechanism: Springless piston powered
Maximum operating pressure: 200psi @ $400^{\circ} \mathrm{F}$ max.

Non-Electric Steam or Air Powered Condensate Pump Dimensional Data

Below is dimensional information for Cemline Condensate pumps.

H22CCP

H22CCP DIMENSIONS (inches)							
$\begin{gathered} \text { SIZE } \\ \text { (Inlet x Outlet) } \end{gathered}$	A	B	C	D*	E	F	Wt.
$1 " \times 1{ }^{\prime \prime}$	341/4	51/2	6	305/8	18	25	198
$1 \frac{1121}{} \times 11 / 2^{\prime \prime}$	$363 / 4$	51/2	6	305/8	18	25	202
$2^{\prime \prime} \times 2$ "	371/8	51⁄2	6	305/8	18	25	207
$3^{\prime \prime} \times 2$ "	381/4	51⁄2	6	305/8	18	25	214

*Allow additional 18 " clearance for maintenance.
H22CCP
Maximum operating pressure: 250 psi $@ 400^{\circ} \mathrm{F}$ max.

[^0]
H240CCP

H240CCP DIMENSIONS (inches)							
SIZE (Inlet x Outlef)	A	B	C	D *	E	F	Wt.
4" $^{\prime \prime}$ flg. \times 4" flg.	$681 / 2$	9	9	$493 / 8$	36	62	400

*Allow additional 18 " clearance for maintenance. H240CCP
Maximum operating pressure: 150psi @ $400^{\circ} \mathrm{F}$ max.
H240CCP-Operating Characteristics Pump Discharge per cycle: 140-185 gallons
Steam consumption: ~ 3 lbs per 1000 lbs of liquid pumped Air consumption: ~ 100 SCF per 1000 lbs of liquid pumped Recommended fill head: 24 "
Exhaust Outlet: 2" NPT
Motive Inlet: 2" NPT
Mechanism: Spring

Non-Electric Condensate Pump Sizing

Abstract

Sizing a non-electric condensate pump must be carefully done to be sure of a working system. Follow the steps below to properly size the pump.

Sizing:
In order to size a condensate pump the below information is required.

1. Condensate Load lb/hr.
2. Motive pressure (steam or air)
available for operating the pump in psig.
3. Vertical lift (back pressure) in ft.
4. Pressure in the return piping in psig.
5. Filling head available in inches
6. Is the system open (vented) to atmosphere or closed.

Total backpressuremustbecalculatedto size a non-electric condensate pump. 1. Total back pressure is the total head in feet multiplied by 0.433 plus the pressure in the return piping.

Example 1:4500lb/hrofcondensatedraining from heatexchangers in a vented to atmosphere or open system. The heat exchangersareusing 75 psisourcesteam pressure.

1. Condensate Load $=4500 \mathrm{lb} / \mathrm{hr}$
2. Motive pressure steam available for operating the pump $=75$ psig
3. Vertical lift (back pressure) $=15 \mathrm{ft}$.
4. Pressure in the return piping $=10$ psig.
5. Filling head available $=12$ inches
6. Size receiver tank for unit located in open system.

Selection 1:

1. Calculate total back pressure. $(15 \mathrm{ft} \times 0.433)+10 \mathrm{psig}=17 \mathrm{psig}$
2. Select the pump from Table A (page 9) where the motive pressure is 75 psig, the back pressure is greater than or equal to 17 , and the condensate pump capacity is greater than or equal to $4500 \mathrm{lb} / \mathrm{hr}$. Resulting selection would be a V25CCP with 1" x 1 " openings.

How to size a receiver tank for this unit, which is located in an open system. The condensate load is 4500 lb / hr, the traps are draining a heat exchanger using 75 psig, and the receiver is vented to atmosphere. Table D (page 10) shows 11.3% of the condensate flashes to steam. The total flash steam is condensate load in lb/hr x \% of condensate flashing to steam. Therefore, ($4500 \mathrm{lb} / \mathrm{hr} \times 0.113$) $=509 \mathrm{lb} / \mathrm{hr}$ flash steam. Use the flash steam lb/hr to select the receiver size from Table E (page 10). From Table E receiver size is $10^{\prime \prime}$ diameter $\times 36^{\prime \prime}$ long with a 4 " vent to atmosphere.

Example 2:

Same as 1 except filling head is 6 ".

Selection 2:

The filling head adjustment is calculated by dividing the condensate load lb/hr by the capacity correction factor from Table C (page 10). Divide the condensate load $4500 \mathrm{lb} / \mathrm{hr}$ by capacity correction factor of 0.70 from Table C. $(4500 \mathrm{lb} / \mathrm{hr}) \div 0.70)=$ $6429 \mathrm{lb} / \mathrm{hr}$. The adjusted capacity of the load for a 6" fill head is $6429 \mathrm{lb} /$ hr. $6429 \mathrm{lb} / \mathrm{hr}$ is greater than $4649 \mathrm{lb} /$ hr capacity of the V25CCP 1 " x 1" so another pump will need to be selected from Table A (page 9). The result is a selection of a V25CCP with 1-1/2" x $1-1 / 2$ " openings with a 6 " filling head.

Example 3:
A heat exchanger is producing 6000 $\mathrm{lb} / \mathrm{hr}$ of condensate. The steam pressure to the heat exchanger is 75 psig, 125 psig motive air is available. The system is closed.

[^1]3. Vertical lift (back pressure) $=20$ ft
4. Pressure in the return piping $=10$ psig.
5. Filling head available $=12$ inches
6. Heat exchanger is located in a closed system.

Selection 3:

1. Calculate total back pressure $(20 \mathrm{ft} \times 0.433)+10 \mathrm{psig}=19 \mathrm{psig}$
2. Determine the correction factor
for air as a motive source.
A. Divide total back pressure by the air pressure available (19 psig / 125 psig) $=15 \%$ B. Use the 15% to select the correction factors for motive gas other than steam 15% would be 1.06 from Table B (page 9).
C. Divide the condensate load by the correction factor ($6000 \mathrm{lb} / \mathrm{hr} / 1.06$ $=5660 \mathrm{lb} / \mathrm{hr}$)
3. Select the pump from Table A (page 9) where the motive pressure is 125 psig, the back pressure is greater than or equal to 19, and the condensate pump capacity is greater than or equal to $5660 \mathrm{lb} / \mathrm{hr}$. Resulting selection would be a V 25 CCP with $1.5^{\prime \prime} \times 1.5^{\prime \prime}$ openings.
4. How to size a receiver tank for this unit, which is located in a closed system.
The condensate load of 6000 $\mathrm{lb} / \mathrm{hr}$ and 125 psig steam pressure. Use the condensate load lb/hr to select the receiver size from Table F (page 10). From Table F receiver size that can be used is either a 6 " diameter $\times 36$ " long or a 8 " diameter $\times 24$ " long.

Piston Powered Non-Electric Condensate Pump Capacity Chart

The charts below are used to select the non-electric condensate pump. Be sure to follow sizing information on page 8 in making final selection.

Table A: Pump Capacity Assuming Steam as motive force.								
Motive Pressure (psig)	Back Pressure (psig)	V25CCP or H22CCP Fill Head 12"				V18CCP Fill Head 6"		V240CCP Fill Head 24
		1" x 1"	1.5 " 1.5 "	2" $\times 2$ "	3" x 2 "	1" x 1"	1.5 " $\times 1.5$ "	4"x4"
250	225	1700	3000	3050	3200	-	-	
250	200	1850	3300	3350	3450	-	-	-
250	175	1900	3300	3400	3550	-	-	-
250	150	2050	3450	3650	3800	-	-	-
250	120	2200	3600	3950	4100	-	-	-
250	100	2350	3700	4000	4700	-	-	-
250	80	2650	4000	4850	5100	-	-	-
250	60	2750	4050	5600	6050	-	-	-
250	40	3000	4300	8700	9200	-	-	-
200	175	2150	3750	3800	4000	-	-	-
200	150	2300	3900	4100	4300	-	-	-
200	120	2500	4150	4450	4650	-	-	-
200	100	2700	4250	4600	4900	-	-	-
200	80	2900	4550	4950	5250	-	-	-
200	60	3200	4700	6500	7050	-	-	-
200	40	3450	4900	10000	10600	-	-	-
150	120	2450	4050	4100	4300	1800	1800	20613
150	100	2800	4400	4500	4750	1900	1950	27971
150	80	3150	4800	5350	5500	2050	2050	35452
150	60	3500	5100	6200	6500	2200	2250	39757
150	40	3900	5350	7400	7950	2300	2600	45382
150	25	4100	5900	12000	12700	2400	3000	47994
125	115	2750	3600	4500	4650	1800	1750	17512
125	100	2900	4100	5000	5300	1900	1900	25862
125	80	3050	4800	5750	6200	2000	2150	33012
125	60	3150	5500	6200	6500	2150	2500	38625
125	40	3250	6500	8300	8800	2300	2700	44256
125	25	3350	7750	10900	12300	2500	3050	48101
100	80	3300	4000	4650	5100	2100	2350	27783
100	60	3650	4600	5450	6000	2450	2850	35589
100	40	4000	6100	7650	9200	2900	3450	42041
100	25	4400	7300	10200	12200	3450	4300	45212
100	15	4950	9100	11900	15550	3950	5950	47156
75	60	3350	4700	5200	5650	2850	3450	20002
75	40	3700	6000	7500	9000	2950	5000	40027
75	25	4300	7250	10100	12200	3400	6300	43084
75	15	5100	8700	13700	16200	4000	7400	46485
50	40	3500	5500	5850	6250	2950	4000	19899
50	25	4050	7000	7900	8400	3350	5500	39727
50	10	3900	9050	12450	13200	4000	7650	46092
25	15	4000	6700	8550	8800	3750	5700	18694
25	10	4400	7700	11100	12150	4000	6600	39945
25	5	4650	8600	12800	16050	4100	7700	45329
10	5	3900	7250	7950	8450	3600	7150	-
10	2	4400	8350	12200	13250	4000	8200	-

Table B: Capacity Multiplying Factors for Motive Gas Supplies Other than Steam

\% Back Pressure vs. Motive Pressure (BP/MP)	10%	20%	30%	40%	50%	60%	70%	80%	90%
Capacity Multiplying Factors	1.04	1.06	1.08	1.1	1.12	1.15	1.18	1.23	1.28

Correction Factors and Receiver Sizing

The charts shown below give correction for filling heads other than 12", technical information on percent flash, and receiver sizing.

Table C: Capacity Correction Factors for Filling Head Variation				
Filling Head Inches	Check Valve and Piping Sizing			
	1 "	1.5 "	2 "	$3^{\prime \prime} \times 2$ "
$6^{\prime \prime}$	0.7	0.7	0.7	0.84
$12^{\prime \prime}$	1	1	1	1
24 "	1.2	1.2	1.2	1.08
$36^{\prime \prime}$	1.35	1.35	1.35	1.2

Table D: Percent of Flash Steam Formed									
Initial Steam Pressure	Temp. ${ }^{\circ} \mathrm{F}$	Receiver Tank Pressure, psig							
psig		0	5	10	20	30	40	50	75
10	239	3.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0
25	267	5.7	4.1	3.0	1.0	0.0	0.0	0.0	0.0
50	298	9.0	7.4	6.2	4.3	2.6	1.0	0.0	0.0
75	320	11.3	10.8	8.6	6.7	5.0	3.7	2.5	0.0
100	338	13.3	11.7	10.6	8.7	7.0	5.7	4.6	2.2
125	353	14.8	13.4	12.2	10.3	8.7	7.4	6.3	3.8

Table E: Vented Receiver Inlet Sizing			
Flash Steam in Ibs/hr	Diameter in inches	Length in inches	Vent Line ine in inches
75	4	36	1.5
150	6	36	2
300	8	36	3
600	10	36	4
900	12	36	6
1200	16	36	6
2000	20	36	8

Table F: Closed System Receiver Sizing					
Liquid $(\mathrm{lb} / \mathrm{hr})$	3" Dia	4" Dia	6" Dia	8" Dia	$10 "$ Dia
	24	-	-	-	-
1000	24	-	-	-	-
1500	36	24	-	-	-
2000	42	24	12	-	-
3000	-	36	24	-	-
4000	-	48	24	12	-
5000	-	72	36	24	-
6000	-	-	36	24	-
7000	-	-	36	24	-
8000	-	-	48	24	-
9000	-	-	54	36	24
10,000	-	-	60	36	24
11,000	-	-	60	36	24

Cemline Condensate Pumps
 Typical Installations

The drawings below show typical piping for non-electric condensate pumps installations.

Typical installation in a closed system

Skid Mounted Condensate Systems
 Dimensional Data — Simplex Units V18CCP, V25CCP, H22CCP

Cemline can supply a skid mounted prepackaged unit with an
A.S.M.E. rated receiver tank. Packages below are for simplex condensate pumps. The packaged systems include a receiver tank gauge glass, shut off valves, and a skid.

Typical skid mounted condensate package

Dimensions (inches)							
Model Number	\qquad	Receiver Size (gallons)	H	W	\bigcirc	S	Wt. Lbs.
V18CCP-1x1-S-25	1" $\times 1$ "	25	455/8	27	54	39	618
V18CCP-1.5x1.5-S-25	1.5 " 1.5 "	25	455/8	27	64	39	878

Dimensions (inches)							
Model Number	Check Valve (inches) (inches	Receiver Size (gallons)	H	W	O	s	Wt. Lbs.
V25CCP-2x2-S-25	$2^{\prime \prime} \times 2^{\prime \prime}$	25	$611 / 8$	30	54	39	920
V25CCP-2x2-S-65	$2^{\prime \prime} \times 2^{\prime \prime}$	65	$66^{3 / 8}$	30	64	39	1134
V25CCP-3x2-S-25	$3^{\prime \prime} \times 2^{\prime \prime}$	25	$611 / 8$	30	54	39	920
V25CCP-3x2-S-65	$3^{\prime \prime} \times 2^{\prime \prime}$	65	$663 / 8$	30	64	39	1134

Dimensions (inches)							
Model Number	Check Valve Size (inches)	Receiver Size (gallons)	H	W	O	S	Wt. Lbs.
H22CCP-2x2-S-25	$2^{\prime \prime} \times 2^{\prime \prime}$	25	$61 / 1 / 8$	30	54	39	990
H22CCP-2x2-S-65	$2^{\prime \prime} \times 2^{\prime \prime}$	65	$66^{3 / 8}$	30	64	39	1150
H22CCP-3x2-S-25	$3^{\prime \prime} \times 2^{\prime \prime}$	25	$611 / 8$	30	54	39	990
H22CCP-3x2-S-65	$3^{\prime \prime} \times 2^{\prime \prime}$	65	$663 / 8$	30	64	39	1150

Skid Mounted Condensate Systems

Dimensional Data — Duplex Units V18CCP, V25CCP, H22CCP

Cemline can supply a skid mounted prepackaged unit with an A.S.M.E. rated receiver tank. Packages available are for duplex condensate pumps. The packaged systems include a receiver tank gauge glass, shut off valves, and a skid.

Typical skid mounted condensate package

DIMENSIONS (inches)							
Model Number	Check Valve Size (inches)	Receiver Size (gallons)	H	W	O	s	Wt. Lbs.
V18CCP-1x1-D-25	$1^{\prime \prime} \times 1$ 1"	25	$455 / 8$	36	54	39	950

Skid Mounted Condensate Systems
 Dimensional Data - Simplex and Duplex Units H240CCP

Cemline can supply a skid mounted prepackaged unit with an
A.S.M.E. rated receiver tank. Packages available are a simplex, or duplex condensate pumps. The packaged systems include receiver tank gauge glass, shut off valves, and a skid.

Typical skid mounted Simplex condensate package

DIMENSIONS (inches)							
Model Number	Check Valve (Size (inches)	Receiver Size (gallons)	H	W	O	s	Wt. Lbs.
H240CCP-4x4-S-115	$4^{\prime \prime} \times 4^{\prime \prime}$	115	$87^{3 / 4}$	50	96	$70^{11 / 2}$	1900
H240CCP-4x4-S-250	$4^{\prime \prime} \times 4^{\prime \prime}$	250	$87 / 3$	50	96	$701 / 2$	1900

Typical skid mounted Duplex condensate package

DIMENSIONS (inches)							
	Check Model Number	Valve Size (inches)	Receiver Size (gallons)	H	W	O	S
Wt. Lbs.							
H240CCP-4x4-D-250	$4^{\prime \prime} \times 4$ "	250	$973 / 4$	76	92	80	3050

Einedsis

Name			Company
Address			Job Name
City	State	Zip	TAG

Cemline Requires the checklist to be filled out before the unit can be shipped.

Sizing Requirements

1. What is the Fluid to be Pumped?
2. What is the fluid's Specific Gravity (water = 1)?
3. What is the fluid's temperature? \qquad
*4. What is the required Flow Rate? \qquad $\mathrm{lb} / \mathrm{hr}$ or \qquad GPM
*5. What is the Fill Head (F)? \qquad inches
*6. What is the Clearance (C)? \qquad inches
4. Does the system have a modulating control valve?YesNo

Installation Requirements

Pump connections \qquad Inlet OutletN.P.T \qquad Flanged
*Motive Gas
*Total Return Header Pressure psig
${ }^{\circ} \mathrm{F}$
AirSteam

Existing Back Pressure in Condensate Return Line (P) psig
Horizontal Run to Return header (H) feet
Downstream pipe size (D) ___ inches

Vertical lift to return header (V) ___ feet
Can pump be vented to atmosphere? \square Yes \square No If "No", please explain If "Yes", is it vented to atmosphere or under pressure? \square Atmospheric
Does the system have an existing flash tank or receiver tank? \square Yes \square No

- Pressure \qquad
*Required Fields
**Consider vertical distance (V), horizontal distance (H), and existing back pressure in condensate return line (P).

Materials \& Accessories

Tank Material:	\square Ductile Iron	\square Carbon Steel	\square Stainless Steel	
Tank Style/Size:	\square V25CCP	\square V18CCP	$\square \mathrm{H} 22 \mathrm{CCP}$	$\square \mathrm{H} 240 \mathrm{CCP}$
Mechanism:	\square Piston	\square Spring		
Number of Pumps:	\square One	\square Two	\square Three	\square Four
Check Valve:	\square Stainless Steel			
Options:	\square Cycle Counter	\square Insulation Jacket	\square Skid Mount Package	

Catalog Brochures Available

- STONESTEEL Water Storage Tanks
- STONESTEEL Jacketed Storage Tanks
- Submerged Heating Coils
- Replacement Tube Bundles
- Steel Tanks
- Chilled Water Buffer Tanks
- System Efficiency Buffer Tanks
- STONESTEEL Commercial Electric Water Heaters
- Electric Boilers
- STONESTEEL Packaged Copper Coil Water Heaters
- Stainless Compact Packaged Copper Coil Water Heaters - Semi-instantaneous, Instantaneous
- Unfired Steam Generators
- Condensed Catalog

Cemline is represented in all major cities.
Please contact your local representative or call Cemline Corporation

[^0]: H22CCP-Operating Characteristics
 Pump Discharge per cycle: 8.8-11 gallons
 Steam consumption: $\sim 3 \mathrm{lbs}$ per 1000 lbs of liquid pumped Air consumption: ~ 100 SCF per 1000 lbs of liquid pumped Recommended fill head: 12"
 Exhaust Outlet: 1/2" NPT
 Motive Inlet: 1/2" NPT
 Mechanism: Springless piston powered

[^1]: 1. Condensate Load = $6000 \mathrm{lb} / \mathrm{hr}$
 2. Motive air pressure available for operating the pump $=125$ psig
